
Introduction: What is Information?

At a talk I attended recently, the invited speaker started out by saying that the
concept of information was universal, and that nobody could argue about its
definition. “Aliens from another planet,” he claimed, “would agree with us instantly
about what information is and what it isn’t” 1.

…then for the rest of his talk, he avoided giving a clear definition.

I think the problem is that information seems so intuitive (or maybe “pervasive” is
the better word) that we don’t think a lot about it. However, academics have long
arguments about what constitutes information.

In Neal Stephenson’s delightful novel “Cryptonomicon”, information is the lead
character more than any of the human protagonists. Stephenson weaves a story
through several generations, as he writes about the use of cryptography today
and during WWII. Sure, Alan Turing’s work at breaking the Enigma code was a
stunning success for code breaking (and mathematics and computer science in
general), but it was only the beginning.

Once US allies broke the Nazi code, they had to make sure that the enemy didn’t
know they had broken it. If the German’s found out, they would quickly change
their encryption method, rendering all future messages unreadable. So,
espionage during WWII quickly became a game of not letting the enemy know
that you know what they know (ad infinitum). [Stephenson, 1999]

For example, the encoded message is information. But so is the fact that there
might be a flurry of cryptographic messages sent right before an imminent enemy
attack. Even without breaking the code, information can be “extracted” of a sort.
Knowing where the message was broadcast from (and more importantly
perhaps, where it is being sent to) is a third form of information, perhaps called 
”metainformation”. Or, knowing the form the message was sent in: radio, written,
or telegraph, is another bit of information. The coding scheme, and the fact that
the message was encrypted at all is a piece of information.

Two Opposing Views

As Marshall McLuhan noted, “the medium is the message” 2. McLuhan is often
misinterpreted here as talking about information theory. Instead, he was making
a point about the personal and social consequences caused by any new
technology. He gives electric light as an example of pure information, since
whether it is used for “brain surgery or night baseball”, it has given birth to brand
new activities that were impossible before it was invented. The fact that the light
has no information content by itself is irrelevant [McLuhan, 1996 (original
essay,1964)].



Meanwhile, in the book Feynman and Computation (which include Feynman’s
seminal essay “Plenty of Room at the Bottom”), Rolf Landauer argues that
information is inevitably physical. [Landauer (Hey), 1999] There must be a
tangible representation, or else it can’t be stored. Feynman himself envisioned
the entire Caltech library of 120,000 volumes stored on a single index card
[Feynman,1959]. However, with Claude Shannon’s connection of information and
entropy, it can be shown that information will tend to disappear and decay over
time. Early computer pioneers worked hard to increase the amount of time
(called big “T”) where information could be stored in delay lines, long before
dynamic memory was invented.

For the purposes of this paper, we can assume that information is stored in a
linear, ordered set of numbers. To make things easier, we can restrict the
sequence to binary 0 or 1 values, since any number, decimal, octal, or
hexadecimal, can be represented as a binary value. This idea was first published
by Swiss mathematician Jakob Bernoulli in 1713 in his “Ars Conjectandi”
(Beltrami, p. 5). The series of ones and zeros forms a binomial distribution that
can be analyzed by a binomial random variable, usually defined as the number of
ones represented in the string of n digits. (Of course, you could count the number
of zeros, too, but you’d get the same results mathematically).

Characteristics of Binary Messages

For the definition above, the information content says the same, regardless of
how it the message is transmitted, how long transmission takes (or when the
message starts and stops), or any other “meta-information” about the message.
This is actually a very difficult condition to meet, for the reasons stated above. In
reality, we often find out more information content from those auxiliary
characteristics than from the message itself.

In his famous 1948 paper, “A Mathematical Theory of Communication”, Claude
Shannon notes that the “semantic aspects of communication are irrelevant to the
engineering aspects”. [Shannon, p. 31]. That is, we can ignore the other aspects
of information, and concentrate on the mathematical characteristics of the binary
signal. In that paper, Shannon described the first useful metric to measure the
information content in a binary message. This measure of information “entropy” is
still used today. You can note that the original title to Shannon’s paper has now
turned into “The Mathematical Theory of Communication” in later editions.

In Shannon’s scheme, a unit of information has an entropy measure proportional
to its probability times the log (base 2) of the probability. In his example, imagine
we have a message made up of the letters A, B, C, and D, with the respective
probabilities of: 1/2, 1/4, 1/8, and 1/8. [Shannon, p. 63] So the total entropy for
the message is the sum of the p logp of each element:

 bits per symbol



The logarithmic function has the attractive property that it is additive, and
appears often in engineering problems (Shannon, p. 32). It also has the nice
property that the curve of the entropy function p logp is bounded by 0 and 1 for
any probability. For example, if we take the probability q to be (1-p), the function
h = 1(p logp + q logq) looks like this:

Figure 1: H = p logp + q logq

So, H itself can be used as a probability function! Even better, the graph above
shows us that the maximum entropy will occur when the probabilities of p and q
are equal. That is, when p = 0.5, then (1-p) also equals 0.5, and the distributions
are equally “mixed”. Likewise, for three variables p, q, and r, the maximum
cumulative entropy will occur when they all have a probability of 1/3. In general
for n probabilities, they will all have probability of 1/n.

Some researchers have dubbed this a measure of the “novelty” of the signal.
Novelty detection in an important topic in artificial intelligence, because
autonomous agents need to separate new and important data from the constant
stream of random information they receive every second from the outside world.
There are papers that use hundreds of different methods to perform the task:
clustering, self-organizing maps, linear programming, and neural networks. The
topic has many applications in other fields, too, including signal and speech
processing, psychology, cognitive science, and biology.

However, most of the results so far from researchers show that the
representation of the data is extremely important. If you can transform the data
into a “good” set of inputs, often the classification task is easy. However, how to
perform that transformation of every possible set of data has not been solved yet.



Coding Theory

In out previous examples, the data has been written down as ones and zeros,
without thinking about what those digits mean. However, in most cases, the
numbers represent an underlying message that we are trying to convey: “101”
could be translated into the number “5”, or perhaps it symbolizes two state
transitions – one from 1 to 0, and the next from 0 to 1. Shannon gives an
example of a message of three letters A, B, C, and D, encoded as the following:

A = 00 C = 10
B = 01 D = 11

The total average length for the message = N(1/2 x 2 + 1/4 x 2 + 2/8 x 2) = 2N.
However there are better possible encoding schemes. For example, if we try:

A = 0 C = 110
B = 10 D = 111

Now, the total average length is N(1/2 x 1 + 1/4 x 2 + 2/8 x 3) = 7/4 N. This the a
better encoding scheme, since 7/4 < 2. This is also the best possible encoding
scheme possible, according to Shannon. In fact, there is an absolute bound on
how much any data stream can be compressed without loss of information. This
is the reason that computer modems can’t transmit any faster than 56 kilobaud
per second over standard US telephone lines. There is a whole industry built
around trying to find better encoding schemes, and there exist algorithms that
adapt in “real-time” to the incoming data.

To find the best possible lossless coding scheme, we can use a “Huffman Code”,
invented by David Huffman in 1952. The method is known as a “greedy”
algorithm because it always takes the best local choice at any moment in time.
Other algorithms need to balance local choices with negative global effects that
might occur at a later stage, but Huffman works by taking the best choice it can
easily see in “one step”. Here is some pseudo-code that operates on a list of n
units that make up a message C with a given set of frequencies: (from CLR, p.
340)

Huffman(C)
n ² |C|
Q ² C
for i ² 1 to n –1

do x ² Allocate-Node()
x ² left[z] ² Extract-Min(Q)
y ² right ² Extract-Min(Q)
f[z] ² f[x] + f[y]
Insert(Q,z)

Return Extract-Min(Q)



It’s not readily apparent from the precious code, but what the algorithm is doing is
finding the two units with the smallest frequency and combining them into a new
unit with frequency f[z] = f[x] + f[y]. This forms a binary tree-like structure with
nodes that have left and right children. Of course, a unit might be combined more
than once, and the tree can have a very complex structure.

To return to our example, we have n = 4 units. We can place these initially in any
starting order:

The two lowest frequencies are C = D = 1/8. So, these would be combined to
form a new unit with frequency 1/8 + 1/8 = 1/4.

Continue the process and merge the two units with the next-lowest frequencies.
For our example, the new unit “New CD” and “B” both have frequencies of 1/4, so
we combine these into a new unit of frequency 1/2.

To find the final coding scheme, start at the top node, and trace a path downward
to each final “leaf” node. Moving to the left will represent a “0” and moving to the
right will be “1”. Note that by doing this, we a performing a “depth-first” search of
the binary tree. In any case, the first node “A” corresponds to the code “0”, while
“B” will be represented by “10”, and so on.

This will turn out to be Shannon’s suggested coding scheme, and you can prove
that it is optimum (see proof of Huffman’s algorithm on p. 342 of CLR). In fact,
the average length of the encoding will approach an absolute bound that equals
the entropy function H!



All Information Is Not Created Equal

All of Shannon’s formulas above assume a discrete noiseless system. If our
channel is dropping bits or corrupting the information, of course the entropy will
go up and the message will slowly be lost. Shannon anticipated this with an
associated theory of discrete channels with noise. For example, if we need to
transmit each bit twice, the entropy and the average length of transmission both
double.

There are better methods we can use to verify that information has been
received correct. The simplest of these is a binary “single-parity-check” (SPC),
which adds up the bits in the preceding signal. If the result is even, “0” is used as
the parity bit. If the result is odd, “1” will be transmitted. However, with this
scheme, two things have happened. First, because the parity bit doesn’t convey
any information by itself, it could be lost without destroying any information.
However, it isn’t treated the same as all the other bits so evidently, “All
information is not created equal”. Second, adding parity bits increases the length
of the message, so we have changed the overall entropy of the message in a
complex way.

The number of digits between parity bits need to be determined by the error rate.
If “1-to-0” errors are more prevalent than “0-to-1” noise, the length needs to be a
function of the message itself. But at the same time, the length of the “frame”
needs to be set even before any information has been transmitted, or decoding
the parity bits will be impossible. So, there are adaptive schemes where the
number of parity bits and their frame sequences changes over time, depending
on how well the communication is occurring.

The Pioneer 10/11 Plaque

If we were sent a message from an alien intelligence, what would it look like?
Well, to our knowledge, we have yet to receive one. However, we have sent
many messages to outer space, so we might as well ask what those messages
look like.

On March 2, 1972 we launched the Pioneer 10 spacecraft and a year later on
March 6, we launched Pioneer 11. Both spacecraft were designed to travel
outside out our solar systems, and both carried a 6-by-9 inch gold-anodized
metal plate that represented our message to any alien civilizations that might
stumble upon it. The plate was engraved with a picture representing several
icons that a team of NASA researchers (including Carl Sagan) spent three weeks
to design. 3



Figure 2: Plaque from Pioneer 10 and 11

First, without looking below, try to guess what the symbols are supposed to
represent.

The circle in the upper-left corner forms a representation of the “hyperfine
transition” of a neutral hydrogen atom. The lines above each “binary 1” reflect the
transition from antiparallel to parallel spins of the nucleus and electron, but as
Sagan notes, “so far the message does not say whether this is a unit of length
(21 cm) or of time (1420 MHz)” [Goldsmith, p. 275]. The NASA team added three
small dashes to the right of the female figure, which equate to a binary value of 8,
but it doesn’t really clear up what the units are. So, the aliens that find this plaque
are supposed to figure out that the value of 8-by-21 is supposed to correspond to
the dimensions of the Pioneer spacecraft drawn behind the woman. I am not an
alien, but I would be confused about the 8-by-21 reference. The key if to multiply
8 by 21 centimeters to get the proper height of the human woman, and not to
think of 8-by-21 as being height and width measurements.

The planets at the bottom of the plaque seem familiar enough, even if they are
not to scale. Worse, they are all in the same line, and not in the usual solar
orbits. There is a dashed code here, too, but this time, the aliens are supposed to
know which the addition of a tiny “serif”, that the units are different than the ones
used previously, and that they are all scaled as multiples of the distance from
Mercury to the Sun. Sagan again apologizes, “There is no way for this unit of
length to be deciphered in the message”… but hopefully the aliens will realize
that half the plaque refers to exact distances, while the other half represents a
relative scale.



The lines bursting out of the left side of the plaque are interesting. They are a
“map” of sorts of the sun with respect to fourteen pulsars and the center of the
galaxy. The lines are actually binary digits again, but this time they are supposed
to represent time intervals, and not distances. The fact that there are ten
decimals digits should lead the aliens to realize that human beings couldn’t
measure distances to ten digits, and even if we could, those distances change
rapidly as the universe expands. So, if the high precision represents time, then
only pulsars would have a property that could be measured precisely. Well,
almost precisely. For two of the pulsars, we only have seven digits of precision,
and a broken line and several zeros are supposed to tell the aliens that we’re not
quite sure about those periods yet.

Ok, even if we grant that we have the relative distances between fourteen
pulsars, they are drawn in a flat plane. Even though we weren’t sure in 1972 of
the distance from the earth to many of these pulsars, a radius “r” is given next in
binary notion. Then, there is an angle 2 and a polar coordinate z. There is no
reference to which direction is “up” or “down”, polar north or south. There was
supposed to be a + or – sign denoted by the spacing of the tick marks leading to
each pulsar, but the engraver who made the plaque made a mistake. The long
line leading to the right behind the human figures give the distance to the center
of the galaxy, hopefully giving the aliens proper directions on how to visit us.

The less said about the male and female figures standing on the right side of the
plaque, the better. Carl Sagan notes how the figures were supposed to be
racially indeterminate, and how they wanted to show off our ten fingers, ten toes,
and our opposable thumbs. Electronic musician Laurie Anderson quips, “In our
country we send pictures of people speaking our sign language into outer space.
We are speaking our sign language in these pictures. Do you think that they will
think his arm is permanently attached in this position? Or, do you think that they
will read our signs? In our country goodbye looks just like hello. Say hello. Say
hello. Say hello.” 4

The Voyager Records

In my opinion, the Pioneer 10/11 plaques were a mistake. There are seven
different units of measurement, and no two alike. One represents time, one
absolute distance, two that are multiples of the absolute distance, and a
confusing (r, 2, z) notation that was screwed up by the engravers. Even if the
aliens manage to break our code, they still have a complex problem to solve,
when they try to find fourteen pulsars in the galaxy with the given properties…
hoping that there relative distances and periods haven changed very much. I
don’t think Pioneer 10 and 11 could find their way home with such a bad map.

Of course, part of the problem is that the NASA team was given a small two-
dimensional area to convey some complication information. Sagan talks about
some ideas that were discussed that didn’t make it onto the plaque: radioactive



time markers (rejected because they would interfere with the Pioneer radiation
detectors), representations of biological systems such as our brain, or a stellar
map (rejected because of problems of representing stellar motion). Surely there
is a better medium to communicate this complicated information.

The later Voyager 1 and 2 spacecraft both carried a copy of a 12-inch copper
record, designed to be played at 16 2/3 revolutions per minute using a ceramic
stylus included on the spacecraft. There are instructions on the lid of the disk’s
container describing how to decode the record, but of course they are pictograms
and not written in any language. Assuming, the aliens can figure out how to
construct a turntable, they will be able to hear sounds as well as “see” 116
pictures. Decoding the pictures might be tricky, since there aren’t any instructions
on how to translate it into a matrix or color bit structure, but if it works, the aliens
will be able to see:

A calibration circle that defines scale and dimensions for the rest of the pictures
A crocodile
Heron Island in Australia
Chinese Dinner
“Old Man with Dog and Flowers”
Supermarket
India Rush-Hour Traffic
 “Licking, Eating, Drinking”
Cathy Rigby
“Cooking Fish”

…among other pictures. Even though there are other photos of human
development and conception, it’s a rather odd selection. There’s the word “hello”
in sixty languages, including Amoy, Gujarati, Hittite, Kannada, Kechua, Luganda,
Nguni, Nyanja, Oriya, Sotho, and Telugu. Even considering that the disk was
created in the awakening social liberalism of the seventies, it’s still an impressive
list. Then, there are several audio sound, including:

Mud Pots
Herding Sheep
“Kiss”
Cricket Frogs
Riveter

To finish off this eclectic CD is a programme of light music, including Bach’s
“Brandenburg Concerto #2”, Mozart, Louis Armstrong singing “Melancholy
Blues”, Navajo chants, and Chuck Berry’s “Johnny Be Goode” (!). I guess we
should be happy that the Voyager spaceships were launched before the
invention of rap music.



Electromagnetic Signals

Music seems to be a step in the “right” direction, if only because linear signals
can convey many different things. For example, the signal from the Voyager
record was able to represent both pictures and sound, as well as the idea of
scale and intensity. Plus, electromagnetic energy travels at the speed of light,
while the Voyager 2, traveling at 56,000 kilometers (35,000 miles) per hour, will
need thousands more years to reach the vicinity of the next nearby stars. Space
is an extremely big place, and the chance of finding a powerless spacecraft is
quite small.

Broadcasting in the electromagnetic spectrum, however, is not without its
drawbacks. The largest problem is that the spectrum is filled to capacity with
terrestrially produced signals that clutter up the airwaves. The first signals that
human beings sent into outer space was in the 1870s, when Heinrich Heine
tested James Clerk Maxwell’s theories on the propagation of electromagnetic
waves. Thirty years later, Gugliemo Marconi created the modern radio, which
became quickly adopted. Today, the frequencies from 9 to kHz, with AM radio
from 535 to 1605 kHz and FM from 88.0 to 108.0 MHz. Meanwhile, television
signals are intermittently from 470 to 806 MHz, with a gap from 608.0 to 614.0
MHz reserved for radio astronomy. Other bands are reserved for maritime and
aeronautical signals, amateur (ham) radio, cellar telephones, and a thousand
other special-use allocations and permits from the FCC. 5

The 1974 Arecibo Message

In 1974, the Arecibo Observatory sent a message into outer space, designed as
the first attempt to contact another civilization with a coherent message. They
increased the power of their transmitter to an unprecedented 2x1013 Watts of
power, some 20 times the generating capacity of all the electrical power stations
operating at the time, all combined! 6 

They chose a frequency of 2380 MHz, where there is a convenient gap in the
allocated spectrum reserved for radiolocation, and a bandwidth of about 10 Hz.
With that small bandwidth and power, they predict the message could be
detected throughout the galaxy by any radio telescope comparable to the one at
Arecibo. The effective radiated power in the direction of the transmission was 3 x
1012 Watts, the largest signal ever radiated before (or probably since). The
transmission was directed at a globular cluster of stars (the Great Cluster in
Hercules/ Messier 13), which comprises about 300,000 stars in a small area.
However, since that cluster is about 25,000 light years distant, it will be a while
before we know if our message is received.



Figure 3: The 1974 Arecibo Message

Again, it’s kind of fun to try and figure out what the message means before
reading on:

The transmission starts with a “lesson” on the binary notation used in the
message. Written from right to left are the numbers from 1 to 10 written in that
notation. The most significant bit is at the top, and at  the bottom is a “number
label”, marking where each number is located.

Next is a series of numbers: 1, 6, 7, 8, and 15. This sequence is supposed to
represent the atomic numbers of hydrogen, carbon, nitrogen, oxygen, and
phosphorous. This allows the next cluster of bits to represent the physical
structure of several interesting molecules, such as sugar (deoxyribose), and the
components of DNA: thymine, adenine, guanine, and cytosine.

Next, as you can expect, is a representation of the double-helix structure of DNA.
Inside the graphic representation of the coiled helix is a number (note the number
label specifying where it starts and stops), suggesting that there are over 4 billion
pairs of the elements above which comprise our DNA. So, even if this message
doesn’t have the instructions on how to build a spacecraft (unlike the message in
Carl Sagan’s book “Contact”), we have at least given aliens some instructions on
how to build a human being. Perhaps they would try to build their own example!

The structure of a human being is placed below the DNA, along with a “ruler”
suggesting that the person is 14 units high. The “unit” in question is the



wavelength of the Arecibo transmission itself, about 12.6 centimeters. This
makes the average human being about 5’ 9.5” tall. On the other side of the figure
is the number 4 billion, which is meant to represent the population of Earth
(which thirty years later is off by about 2 billion).

Finally, there is a graphical representation of the solar system (with Earth
“highlighted”) and a picture of the Arecibo telescope. It is pointing downward to
suggest that the message is being beamed from the highlighted Earth. The last
bits of the message represent the size of the Arecibo dish. It is 2430 wavelengths
across, or about 1004 feet wide. 

So, the Arecibo transmission is a bit clearer on the scale and format of the binary
notation used in the message. It is missing a “map” similar to the Pioneer plaque,
but it contains a lot of other interesting information. One minute after its
transmission, it had already traveled as far as the distance from the Sun to Mars.
After 71 minutes, it had passed Saturn, and a little later, both the Pioneer
spacecraft, leaving the idea of physical data far behind.

What is Randomness?

Human beings are terrible at recognizing randomness. In one test 7, subjects
were asked to choose which of the following sequences was random and which
the researchers invented:

0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0
or
0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0

Most subjects said that the second sequence seemed to be a lot more random.
The five zeros in a row in the first sequence looked suspect, as well the fact that
there are only 10 out of 28 ones in the first sequence, compared to the 14 out of
28 they expected to find that are shown in the second sequence. This is
confusing, because human beings are normally inclined to see patterns where
none exist. For example, the fact that people can see faces (or pictures of Jesus
Christ) in puddles and tree trunks hints that the brain is hard-wired to recognize
faces. 8

Or, as John Cohen says, “What they appear to tell us is that nothing is so alien to
the human mind as the idea of randomness.”

In actuality, the first number is the first seven digits of B: 3141592, written in four-
digit binary numbers. For the second number, I studiously made sure that the
numbers of ones and zeros matched, and that there weren’t any strings of five
digits in a row that were the same.

Actually, for a 28 digit number, the probability that there is a sequence of four (or
more!) zeros or ones in a row is about 100%. Think of it this way: there are



sixteen possible sequences of four ones and zeros (shown below in Figure 4).
The chance that a “1111” will appear given any four digits is 1/16. Doing this
seven times gives a probability of 7/16 that a “natural” 1111 will appear. Of
course, other combinations of 1111 can be made, such as a seven followed by
an eight or nine (0111 + 1000 or + 1001), pumping the probability over 50%.

Similar reasoning can be made for four (or more) zeros in a row. So, the chances
that the second sequence could appear randomly (with the longest running
sequence being three measly ones in a row), is quite small.

Figure 4: Table of binary digits for pi translation

As far as randomness goes, the first sequence using pi is more random. Even if
we discover the “meaning” or creator of some series, it doesn’t make the
numbers any less random. There is some bias since there are no numbers
“greater” than 1001 = 9 that can be used in the sequence… so no “1111” would
appear naturally. However, as noted above, sequences of four ones can appear
in other ways. This is often called a “run test”, testing the probability of the
existence (or absence) or the longest continuous string of digits.

Similar to the “run” test is the “gap” test, which measure how many “non-zero” (or
“non-one” digits are between any two zeros or ones. For binary sequences, run
and gap tests are the same thing. However, if we were dealing with decimal
numbers, gap tests might be more useful that run tests, where the possibility of
five “eights” in a row might be so small that it is dwarfed by the sample size n.
Both of these tests are known as “serial”, because the order of the digits is
extremely important. In this fashion, they are more like the number sequences
discussed later than tests on random numbers themselves.

Testing the 1974 Arecibo Message

All of these tests are simple hypothesis tests. A sequence of binary numbers is a
binomial distribution, much like flipping a coin. We can count up the total number
of zeros or ones in the sequence to make sure that it equals 50% (i.e. an
unbiased probability).

A binomial random value can be approximated by a normal distribution if np > 10
and n(p-1) > 10. For the 1974 Arecibo message mentioned before, n = 1679 and
p is expected to equal q, and both should be 0.5. So, np = (1679)*(0.5) = 839.5

0000 = 0 0101 = 5
0001 = 1 0110 = 6
0010 = 2 0111 = 7
0011 = 3 1000 = 8
0100 = 4 1001 = 9



which is a lot larger than 10. So, we can go ahead and look at a normal
distribution. However, looking at the actual ones and zeros of the message gives
the totals below:

Number of ones expected = n/2 = 1679/2 = 839.5
Number of ones actually in message = 397

P(1) = 397/1679 . 0.23645
Likewise, P(0) . 0.76355

Are these results out of line? Do they prove that the Arecibo sequence is not
random? Well, we need to perform a hypothesis test where the hypothesis “Ho”
is the idea that the P(1) = 0.5. The “alternate hypothesis Ha” is the idea that the
probability P(1) < 0.5.
 
For our data, the test statistic value z is:

=

We want to reject Ho in favor of the alternate hypothesis if the value of z is less
than a chosen z. For example, at a “significance level” of 0.01 (or in other words
1% confidence that we are correct), z0.1 is –2.33. Since z is really small:

Z = -0.23645/0.012202387 = -21.59824 which is much smaller than –2.33

In fact, we could use an extremely small significance level of 0.001 (or 0.1%),
and still be reasonably sure that the fact that there are so few zeros hints at the
idea that the 1974 Arecibo message is random.

Conditional Probability

We could imagine strings where P(0) . P(1) . 0.5, but the message is still
probably not random. For example, the following string definitely has a pattern:

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

So, we can test the conditional probability of each of the numbers. For example,
the probability of a one following another one should be the same as a zero
following that one. Statisticians would say P(0|1) needs to be equal to P(1|1).
This is similar to combining the Arecibo message in groups of two, and making
sure that there is the same number of “00”s as there are “01”s, “10”s, and “11”s.
They should all have a probability of 0.25.



This is known as a “serial test”, compared to the earlier “frequency test”. We
could do the same thing with groups of three, then four, and so on. However, on
second thought, doing groups of four is the same things as examining groups of
two. For example, if the all four digits sequences “0000” through “1111” come up
with equal probability, we don’t need to look at “00”, “01”, “10” and “11”. In that
case, all even numbers less than six have been “covered”. One scheme would
be to look at all prime sequences of numbers; make sure that we examine
groups of 1, then 2, then 3, 5, 7, 11, and so on.

Approximate Entropy

However, where should we stop? Our Arecibo message is only 1679 digits long.
If we look at sequences of 1679 digits, there will only be one of them represented
in our data. Clearly, we have hit upon the limitation of our “small” sample size.
Our tests only work if np > 10. If each group we are testing has leangth m, there
are 2m possible combinations of the digits 0 and 1. Since we expect to have an
equal probability for each of our groups of numbers, we want p = 1/2m. Similarly,
the number of possible groups n depends on the length, too, as n = 1679/m. So,
we solve (1679/m)( 1/2m) > 10 to know that the largest m we can test is sets of
only 5 digits. Clearly, this doesn’t give us many hypothesis tests that we can
perform, since m = 4 is so similar to m = 2.

In 1997, Steve Pincus suggested the use of “approximate entropy” as a measure
of the randomness of a number. Pincus, a freelance mathematician from
Guilford, Connecticut, (as well as Burton Singer of Princeton University and
Rudolf E. Kalman of the Swiss Federal Institute of Technology, Zürich), used the
ideas of Kolmogorov and Solomonoff to develop a new definition of complexity.
In this definition, the number must equal numbers of ones and zeros, as well as
pairs, triplets, and so on, up to sequences of length log2 log2 n + 1. 9

So, for the thirty-two possible five-bit sequences 00000 through 11111, only
00110, 01100, 11001, and 10011 are pronounced as random. The digits of pi
also passed the test as random. Note that if we look at sets of two numbers,
there are only four possible choices: 00, 01, 10, and 11. Each of these has a
probability based on its presence in the input string. So, we are back to the
original definition of entropy:

If we perform this test on bigrams (groups of two digits) and then move to
trigrams (groups of three), how much information about the randomness of the
signal have we added? This is the “ApEn(k)”, or approximate entropy of the
difference between block of length k and those of length (k-1):



Using some approximate entropy code written in MATLAB [Beltrami, p.165], I
tested the 1974 Arecibo message against four other signals: all ones, a
normalized sine wave, alternating zeros and ones, and a completely random
signal using MATLAB’s built-in random number generator. However, I couldn’t
get the sample code included with Edward Beltrami's book to work for a grouping
constant “k” higher than 1. There were several typos, and I wasn’t exactly sure
how Beltrami was using a hard-coded permutation matrix. However, I reach
some interesting results:

All ones: -8.9658
0 1 0 1 0 1 0 1…: 1
1974 Arecibo Message: 6.6308
Sine wave: 8.9542
Random Signal: 8.9658

I think it is interesting that a signal of all ones is the lowest score, while a random
signal is the highest score. Even better, they are equal but with opposite signs. It
would have been interesting if I had normalized the results from 0 to 1. The
ordered signal [0 1 0 1 0 1…] was a value of 1, just about the midpoint of the two
values. The 1974 Arecibo Message was a lot more random, but not quite as
random as the completely random signal. I think the reason a sine wave was
reported as more random than the Arecibo signal was because I used a grouping
of k = 1. I’m sure if I used higher values of k, I would eventually surpass the
periodicity of the sine wave and it’s value would go dramatically down.

Spectral Tests

“Spectral tests” are used to measure regularity in a signal. For example, a sine
wave has an extremely regular period (defined as its frequency), while pure noise
doesn’t have any repeating cycles at all. One way to test regularity is to
“correlate” the signal with itself.

A correlation function measures the similarity between two functions x and y by
multiplying the first term of x with the last term of y. Then, the next term of the
correlation function is calculated by multiplying the first term of x by the “next-to-
last” term of y, and adding that to the second term of x multiplied by the last term
of y. Performing an autocorrelation is simply equivalent to calculating the function
using the same signal twice:

A better way of thinking about this is to take the signal and copy it. Then, “flip” the
signal backwards, and slide it along the original signal, multiplying matching term
and adding the resulting series together.



Figure 5: Autocorrelation example

As an example, here is a sine wave autocorrelated with itself.

Figures 6 and 7: Sine Wave and Autocorrelation

Meanwhile, examining the 1974 Arecibo Message shows very little regularity:

Figure 8: Arecibo Data



Figure 9: Autocorrelation of Arecibo data

Performing a correlation is similar to multiplying the Fourier transforms of the two
signals together point-by-point. So, we might as well look at the FFT directly.
Since there are 1679 units in the message, we get a Fourier transform of 1679/2
= 839 points. The result looks a lot like the previous autocorrelation, as it should:

Figure 10: FFT of Arecibo Data



Again, this graph doesn’t show any outstanding patterns of regularity. We don’t
even see anything strong corresponding to the 23-by-73 matrix of the message
itself. For example, if there was a single “1” repeated for every 23rd element,
regardless of any other data bits, we would expect a peak at the corresponding
frequency:

(23/1679) * 2.380 x 109 = 0.0336 x 109

Or, for the 73rd element, we would get a peak at (73/1679) * 2.380 x 109 = 0.103 x
109. However, just looking at the graph above, those peaks are small. Performing
more statistical analysis shows that they are there, but they are overshadowing
by the rest of the signal. For example, since we showed earlier that there are
more zeros than ones in the signal, this will be reflected as a “bias”, and will
manifest itself as a huge peak at f = 0 MHz.

I think the Arecibo signal would have been more successful if it would have had a
distinct “frame” that was placed every 23 bits. This would make the FFT easier to
detect compared to random noise, and would perhaps provide a hint about the
23-by-73 regularity and which way the matrix should be oriented.

Other Randomization Tests

Another randomization test is called a “poker” (or partition) test, where the series
is divided into five-digit block, and the results are compared against the expected
occurrence of certain five-card poker hand [Bennett, p. 171]. There are also “chi-
square” statistical tests, the “Kolmogorov-Smirnov” test, the “coupon collector’s”
test, permutation tests, and examinations on subsequences of the original data.
[Knuth, pp. 34-66]

Which one of these randomization tests is best? What happens if two tests
contradict each other; one says the number is random, while the other say it is
not? Worse, there is no clear definition is we have succeeded in finding a random
number. We have only managed to prove or disprove a given hypothesis that
tests for a single characteristic of the data, be it a run sequence or a balanced
number of ones and zeros. Of course, when generating a 100-digit number, there
is a small (but finite) probability that the sequence will be made entirely of ones.

Here’s another question: can we have periods of non-randomness in an
otherwise random number? What determines where those patches start and
stop? As Peter Bernstein comments in his book “Against the Gods”, the situation
is similar to a court of law where the criminal defendants do not attempt to prove
their innocence, but rather, their lack of guilt 10.  Or, Keane points out that we can
have relative randomness in the same way that we can have relative accuracy
without having knowledge of absolute accurate measurement 11. For example,
we could measure a sheet of paper to be 8.5 inches long. With a better ruler, we
could find the width to be 8.501, then 8.50.163, and so on. When do we stop?



Perhaps we can never have the exact measurement, but we can possibly define
when we are “close enough”. In a similar way, we could say when a number or
sequence is “random enough”. Choosing the winner of a bake sale might be
more casual than picking the Powerball lottery.

Random numbers

John von Neumann once stated that it is “easier to test random number than it is
to manufacture them.” 12 So, if we were in charge of the lottery, what is the best
way to pick the winning combination?

In the 1920s, Leonard H.C. Tippett came up with a list of 5,000 random numbers
by mixing up small numbered cards from a bag. However, this method proved to
be time-consuming and hard to do. So, he tried again, and came up with a list of
40,000 digits taken at random from a table of local census data. In 1927,
Cambridge University Press actually published an entire book made up of
Tippett’s random numbers – definitely boring reading, but an essential tool for
statisticians of the time.

In fact, the book became so popular that other books came out soon afterward: a
list of 15,000 numbers selected from the 15th through 19th decimal places of a
logarithm table, and 100,000 numbers produced by a machine that used a
spinning circular disk. However, all of these methods reflected a little of the
methods that were used to produce them. For example, Tippett’s census data
might have more even numbers in it, since more couples live together in houses
that single people.

So, in 1949, the Interstate Commerce commission published a new report with
105,000 random digits that were compiled from mixing all the other previous
tables. For example, you could take ever third random number from Tippett’s
table, or perhaps write down every fourth term backwards. Or, you could add
several random numbers together and take the last several significant digits,
since any linear combination of random numbers will be random also. However,
the need for good random number tables increased until 1955, when the RAND
corporation published a book of one million (!) digits.

With the invention of modern computers, we were able to get as many random
numbers as we could ever want. In 1951, John von Neumann published a simple
algorithm to generate random numbers: Pick an initial number of length n, square
it, take the middle n digits of the result, and repeat the process. However, this
method is flawed for many initial values. For example, taking the number 3,792
and squaring it gives 14,379,264. Throwing away the first and last couple of
digits leaves us with the same number we started with! [Bennett, p. 142]



So, modern random number generation usually follows one of three methods: a
generator based on number theory, “congruential” generators that use the
remainders of division operations (or modular arithmetic), or generators based on
the bit structure of computer-stored information. A new method called “add-with-
carry” and “subtract-with-borrow” generators use the Fibonacci sequence
(defined later in the paper). Personal computers today sometimes have
hardware-specific random number generators, or they use other physical
properties of the computer that are random, such as small changes in the clock
speed or a heat sensor. Or, some programs use human interaction to form the
“seed” that forms the starting conditions of the random number generator. For
example, the number of second it takes to get the hard disk “up to speed”, or a
time interval between the last two keyboard clicks can be used to form a random
number.

One anecdotal story talked about a casino that wasn’t very careful with the
random number generator in its slot machines. One lucky gambler figured out
that if he cycles the power to a machine, it would always start up in the same
sequence. After two plays, he would get a large win. Repeating the sequence led
to a huge loss for the casino. 13

Random-Like Codes

So, if we have a hard time saying that a signal displaying regularity is man-made,
can we say the opposite: a random signal has no information? Again, this is
impossible to do. For example, we could take a signal that displays non-random
characteristics (as defined by one of the tests described earlier), and insert extra
bits into the message in a pre-determined pattern. By analyzing the original
message, we could balance the extra bits so the resulting signal passes the
randomization tests it previously failed.

One method is called “soft-output” decoding, where the probability of the input is
modified by extra information, such as adding Gaussian noise to the signal. One
example is a two-dimensional single-parity-check bit. Imagine that we have a
number with a parity check bit at the end:

0 1 0 1 0

Now, imagine that we add a second four-bit string a calculate the parity bits not
only horizontally, but vertically as well:

0 1 0 1 0

1 1 0 1 1

1 0 0 0 1

Final string = 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1



It would seem as if we have added a lot of extra bits into the message, but
actually, the ratio of SPC codes to actual data is fixed proportional to the length
of the input data. As the data grows by n x m, the length of the parity check
sequence is n+m+1. Even better, the error bit rate drops dramatically with this
extra information, because the original matrix can be restored given only the
parity bits. Also, as we noted before, the sequence of parity bits will appear to be
random, making the combined signal look more random also.

There are two-forms of random-like codes. “Strong” codes have an extremely low
error rate but are very hard to design. “Weak” methods are easier to construct,
but are often affected by bit noise and high entropy. Then, there are three
separate families of random-like codes. First, there are random block-like codes
like the n-dimensional SPC code mentioned earlier. There are several related
examples, such as “minimum distance separable” or “autodual” codes developed
in the 1990’s, which try to reduce a weight measurement to make the message
appear random.

Second is a family of codes called “pseudo-random recursive convolutional”
codes. These takes the original message and repeatedly pass it through an
algorithm that changes it in a predictable manner. Even though the final message
appears random, it can be rolled back to recover the original data. Finally, “turbo-
codes” are a new technique that compares interleaving new data with
permutating the data in several ways. All of these techniques make the original
data appear random, even if it is extremely regular to start with.

But why use a random-like code in the first place? Well, it would be extremely
unsuitable if we were trying to contact space aliens as with the Arecibo message.
However, if we were trying to keep our message hidden, it would be extremely
useful. As mentioned earlier, there are several different manners of information,
and you can’t decode a message if you can’t detect it in the first place. However,
there is also a philosophical aspect. In a paper for the Fourth Canadian
Workshop in Information Theory and Applications, Gérard Battail thinks that this
research is more closely related to Shannon’s original ideas than simple work
trying to find better and better compression algorithms, “This may initiate a
renaissance of coding techniques with criteria and specifications closer to both
the spirit of Information Theory and the engineering needs”. In other words, there
are other reasons to create a coding scheme than simply trying to increase the
signal-to-noise ratio or the total message length.

Number Sequences

When I was in school, I prided myself on being good at solving “number
sequence” puzzles. For example, the teacher would ask us what the next number
in the sequence “2 4 6 8 10” was. However, one day, I read a puzzle in “Games”
magazine that trouble me for several weeks:



Find the next number in the sequence
"14, 18, 23, 28, 34, 42, 50, 59, 66, 72, 79, 86, 96, 103, …"

I used all the tools I could think of: running sums, products of contiguous
numbers, and even trying to relate the sequence to some irrational numbers I
could think of, like the digits in pi or e. I finally thought I had the correct answer,
based on a formula based on the round-off error of a complex equation I figured
out.

When the next month’s issue arrived, I was disappointed to read that the answer
was “110”. Douglas Hofstadter says, "There are no interesting mathematics here:
these are just the subway stops on the Broadway IRT line in Manhattan.
The next stop is 110 Street, also known as 'Cathedral Parkway'; if you
give the latter as an answer to the puzzle, you'll get some laughs." [Hofstadter,
p.28] Having never been to the “Big Apple” I would never have guessed the
answer.

Triangular Numbers and Phyllotaxis

Some number sequences are special. For example, the Fibonacci sequence is
created when every number is the sum of the previous two numbers:

1 1 2 3 5 8 13 21 34 55 89 144 …

The Fibonacci sequence turns up in some very surprising places, including the
sequence of petals on a flower. In the center of many flowers is are small
“florets”, which attracts insect to help pollinate the flower and in the case of
sunflowers, contain seeds needed to reproduce. In Botany, the study of the floret
is called ”phyllotaxis” and is used to classify and identify new forms of plants and
flowers. For years, scientists have noticed that the arrangement of the floret
behaved according to the rules of mathematics. Alan Turing said:

According to the theory I am working on now there is a
continuous advance from one pair of parastichy numbers to
another, during the growth of a single plant… You will be inclined
to ask how one can move continuously from one integer to
another. The reason is this – one can also observe the
phenomenon in space (instead of time) on a sunflower. It is
natural to count the outermost florets as say 21 + 34, but the
inner ones might be counted as 8 + 13” (all of the above as
member of the set of Fibonacci numbers)14 (Prusinkiewicz, 1990
p. 104)



Figure 11: Close-up of a daisy floret

With the naked eye, we can easily see the “spirals” that form outward from the
center. These are called “parastiches”, and surprisingly, there is a different
number arranged clockwise compared to counter-clockwise. In the daisy above,
there are 34 clockwise spirals and 21 counter-clockwise. Domestic sunflowers
have 34 and 55 parastiches, respectively, and the pattern can also be seen in
pine cones, fir cones, and pineapples, too. [Prusinkiewicz, 1990, pp. 102-106]

Hofstadter’s AI Assignment

Douglas Hofstadter defined sequences similar to the Fibonacci sequence to be
“triangular numbers” [Hofstadter, p. 14]. Each term in a triangular number is
defined by summing a series of numbers according to a specific rule. For
example, the fifth triangular number 15 is made up of adding (1+2+3+4+5):

1 3 6 10 15 21 28 36 45 55 66 78 91 ...

For his system, there are also “square numbers”, “pentagonal numbers”,
“hexagonal numbers”, and so on. He notes that most people would be surprised
to realize that the series of squares (“1, 4, 9, 16, 25, 36, 49, …”) can be created
by summing the first n odd numbers. For example, the fifth square is 25, which is
also 1 + 3 + 5 + 7 + 9.

For the class he was teaching on artificial intelligence, Hofstadter asked his
students to write a computer program that would use a library filled with
sequences such as the triangular numbers above, the series of prime numbers,
of even a simple linear ordering such as “1 2 3 4 5…” or “2 4 6 8 10…”.

Hofstadter realized that the assignment would quickly turn into a searching
algorithm such as depth-first search or breadth-first search (similar to many real-



world artificial intelligence problems). The students would take the given
sequence of numbers and transform it with one of the templates in the library. A
metric would tell the students how close or far away they were from the target
sequence, and if needed, several more transformations would be applied. This is
similar to the way Prolog searches and backtracks through its rule set to proof
the truth (or falsehood) of various axioms.

At the end of the semester, Hofstadter had a competition, and the best student
entries were given new numerical sequences to solve. Surprisingly, several of
the programs worked extremely well, even when given new domains of
sequences that they had never seen. Hofstadter talks about how the assignment
led into a class discussion of chess-playing computers and music synthesis.

Guessing and Overfitting

Finally, Hofstadter wishes that he would have structured his assignment so that
the students were only given part of the sequence, and they would have to solve
it or ask for another number. This way, they couldn’t write an algorithm that only
generated the test data but couldn’t extrapolate the next number in the
sequence.

In numerical analysis, we can create an n-degree polynomial that will fit (n-1)
points of data. For example n = 2 points create a straight line, while n = 3 creates
a parabola. This new line-fit can be used to interpolate unknown values that were
not given. However, this method is extremely bad for extrapolating new values.
For example, if the old data point were in the range [a,b], the interpolating
function can have extremely large error for f(x) < a or f(x) > b.

The field of connectionism and neural networks displays this problem by the
phenomena of “overfitting”. If we train and test on the same set of data, there is a
danger that the final functions will match the data exactly, causing huge errors
with data that isn’t in the training set.

If we are trying to “explain” a series of numbers (or if we try to guess the next
number in a series), we could think of this as writing a computer program that
would generate that series. For example, you could envision a rule that says,
“The sequence is the numbers 50, 55, 62, 71, 79, followed by the square root of
negative one”. Written as a computer program, this sequence is valid even if the
rule seems arbitrary. In fact, any answer, be it “-1”, “1,024”, or “pi” could be
possibly rationalized as correct, given an arcane enough explanation.

Often, the “correct” answer to a simplest and most elegant answer is the one that 
can be written down quickly. Algorithmic complexity can be a good measure for
how “random” a number sequence is.



Algorithmic Complexity

In this definition, the digits in the number pi are not random, because there exist
several algorithms that calculate it completely. In fact, this corresponds to human
intuition: people who can memorize numbers easily often comment that how
“hard” of easy it is to remember a sequence depends on how easy they can store
a mnemonic method in their brain that may have little to do with the statistical
properties of the number. 15

For example, take a string discovered by David G. Champernowne. It is the set
of all possible one-digit combinations (there are two: 0 and 1), then the set of all
two-digits combination (out of four possible), and so on:

0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000,etc.

It can be shown that this string is random (“typical” in Shannon’s terminology),
because it includes as many zeros as ones, and that every two-digit sequence is
also uniformly represented. This will possibly be a very small error caused by the
fact that the string has a beginning and an end that can’t be combined into a
pattern, but that can be solved by reversing the series into a mirror or itself:

etc.,000,11,10,01,00,1,0,0,1,00,01,10,11,000,etc.

However, this string is not random at all to a human eye. In fact, it can be written
in a C program using recursion in only four lines of code! Better yet, we can
create a function written in numbers, that when translated, produces a second
sequence. 

To state it more precisely, the complexity of the algorithm depends on the
complexity of a Universal Turing Machine needed to fully describe the sequence.
However, we run into two problems here. First of all, there is no penalty if the
Turing machine implements simple rules, but takes infinite time to calculate the
sequence (like a calculation of pi). Also, there are several different types of
Turing machines, and what may be difficult for one machine to calculate may be
easy for another, or vice-versa. In that case, which one “wins”? How complex is
the original sequence?

Chaitin’s Approach to Complexity

One problem with algorithmic complexity is that it is hard to perform operations
using those complexity measures.  If two strings are completely independent, the
complexity of the concatenated string is sum of the two. In other words, you have
to give an algorithm on how to produce the first string, and then start over for the
second string. If there is a lot of shared information between the two strings, you
might be able to write one program to describe them both (such as a string and
its exact inverse).



Gregory Chaitin gives another idea of complexity in his paper, “Complexity and
Randomness in Mathematics”, given as a talk for the 1991 “Problems in
Complexity” symposium in Barcelona Spain [Chaitin, pp. 191-195]. Suppose you
wanted transmit the string “101” and “000”. Well, if you knew beforehand that the
strings were of equal length, you could transmit the concatenated string
“101000”. However, if the second one is longer (such as “00000”), that trick won’t
work. Chaitin suggests doubling each string and adding an “01” marker at the
end to show where the delineation occurs.

<101,00000> ÷ <11 00 11 01 00 00 00 00 00 01>
1 0 1 0 0 0 0 0

So, now the complexity is bounded by twice the sum of their individual entropy:

However, we could also add a “header” that defines how many bits are in each
message. To help decoding the string, the header will consist of doubled digits
(followed by that “01” stop code), and then the original string:

<11 11 01 101 11 00 11 01 00000>
1 1 1 0 1

The “11” corresponds to the number “3”, which is the length of the string found
after the stop code. Likewise, “101” relates to the five digit sequence of the next
string. Now our concatenated complexity is:

Chaitin goes further to put a second header in front of the first header!

<11 00 01 11 101 11 11 01 101 00000>
[1 0 ] 3 [1 1 ] 5

…and the length is:

This is a bit confusing, but the first code “10” tells the decoder that the next two-
digit string is going to specify the length of the “real” string. When the decoder
find the length “3”, we read in three more digits and we’re done for the first part.
Even though this scheme seems a lot more complex, we have only increased the
length of the final string from 22 digits to 25. Now the total length is:

With headers of headers of headers, our length turns into:



And so on. Now, me have a complexity measure that can be calculated given two
separate strings. Instead of a simple entropy n, we can recursively find a limit to
the entropy n plus the complexity of n. This measure has a lot of advantages, but
is still being developed. Chaitin admits, “The development of this new information
theory was not as dramatically abrupt as was the case with Shannon’s versions.
It was not until the 1970s that I corrected the initial definitions” [Chaitin, p. 206].
There might still be a lot of work to be done.

A Gardner Puzzle

Martin Gardner has a great puzzle in his book “Knotted Doughnuts and  Other
Mathematical Entertainments”.  Try to figure out the principle that orders the
following digits from 0 to 9:

8 5 4 9 1 7 6 3 2 0

When the answer was printed in the Massachusetts Institute of Technology’s
“Technology Review”, a reader named Benson P. Ho sent in an alternate
answer. In his solution, he drew a “V” of numbers that added up to a sum. First,
subtract the number to the right of each ‘V” from the digit on the left. If the result
is negative, add 10. So, 7-6=1 and 4-9(+10)=5. Then, the pairs of arrows point to
the sum of the two digits, where if the sum is greater than 10, just subtract 10.

Figure 12: Benson P. Ho’s Solution

Notice how the same series of numbers appears going up the right side of
arrows. The probability of any two series appears by random chance is one part
in 10 trillion or 0.000000000001%. The “correct” solution given by the
Technology Review seems mundane in comparison: the numbers are in
alphabetic order when spelled out as: “eight”, “five”, “four”, “nine”, “one”, “seven”,
“six”, “three”, “two”, and “zero”. There appears to be is a seemingly huge amount
of information stored in Ho’s solution. Either it is an amazing co-incidence that
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6 A report from the staff at the National Astronomy and Ionosphere Center at Arecibo was first
published in the “Icarus” newsletter (Number 26, 1975 by Academic Press, Inc.) but also reprinted
in Goldsmith’s “The Quest for Extraterrestrial Life” on p. 293
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the series would have a “V” property like Ho suggests, or perhaps there is
something unique and strange about the alphabetic ordering of those numbers.

As it turns out, neither answer is the case. There is nothing interesting about Ho’s
method. In fact, any ten-digit string of numbers would produce the same results.
So, this example might contradict an algorithmic interpretation of complexity. We
could define an algorithm to a computer based on alphabetic sorting, but we
would need a lot of auxiliary information first. We would need to match each
number with its alphabetic spelling, and then define an ordering that is much
larger than simply specifying an arbitrary ordering of the ten numbers. Ho’s
solution forms an algorithm that is shorter, but is evidently content- and
information-free.

Or, what if there exists an algorithm to specify complex irrational number but we
don’t know what it is? Is the complexity of a series dependent on how clever we
can be at writing algorithms? If that is the case, we could say that all series have
the same complexity to a bad mathematician. To say that a simpler algorithm
exists doesn’t give us any clues on how to find that algorithm, and so the
measure is may not be very helpful. Perhaps we will come up with a better idea
of complexity in the future. It would be a lot easier than trying to figure out a way
to write better algorithms!

Endnotes



9 The Encyclopedia Britannica is now offering some great content for free on their web site. Here
is a useful page on approximate entropy that is an update of their “official” entry on statistics:
http://www.britannica.com/bcom/eb/article/0/0,5716,124390+1+114137,00.html

10 As quoted in Beltrami, p. 27
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biological phenomena

15 A great web page devoted to this topic was written by Chris Hillman at:
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